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Abstract

We study the zero location and asymptotic zero distribution of sequences of polynomials which satisfy an
extremal condition with respect to a norm given on the space of all polynomials.
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1. Introduction

Sobolev orthogonal polynomials play a central role in the extension of the general theory of
orthogonal polynomials. Let �0, . . . , �N be finite positive Borel measures in the complex plane
such that the support S(�0) of �0 contains infinitely many points and all polynomials are integrable.
Let P denote the vector space of all polynomials. On P we define the norm

‖q‖S =
⎛⎝ N∑

j=0

∫
|q(j)|2 d�j

⎞⎠1/2

, q ∈ P, (1)
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where q(j) denotes the jth derivative of q. The nth monic Sobolev polynomial with respect to this
norm is the unique polynomial qn of degree n and leading coefficient equal to 1 such that

‖qn‖S = inf
{‖q‖S : q = zn + · · ·} .

The existence and uniqueness of qn is easily guaranteed. In fact, qn is the monic polynomials of
degree n that satisfies the orthogonality relations

0 =
N∑

j=0

∫
(z�)(j)q

(j)
n d�j , � = 0, . . . , n − 1.

Some of the most relevant results in the asymptotic theory of Sobolev orthogonal polynomials
may be found in [7,11] for strong asymptotic behavior, and [6,10] for weak asymptotic. There are
no results specific for ratio asymptotic; that is, except when strong asymptotic takes place. A key
problem in the study of the asymptotic behavior of Sobolev orthogonal polynomials is the question
regarding the location of the zeros of such polynomials. Unlike the case of standard orthogonality,
the zeros of Sobolev orthogonal polynomials can abandon the support of the measures involved
in the inner product. An approach which allows to deal with this problem, in terms of a bound of
the multiplication operator defined on P , was introduced in [9] using the notion of a sequentially
dominated family of measures. This approach was also used in [10].

The family �0, . . . , �N of measures is said to be sequentially dominated if

d�j = fj d�j−1, j = 1, . . . , N, (2)

where the fj are bounded positive Borel measurable functions. In [10] the authors prove that if
S(�0) is compact and the family of measures is sequentially dominated then the multiplication
operator is bounded in the normed space (P, ‖ · ‖S) and the zeros of the Sobolev orthogonal
polynomials lie in the disk centered at the origin and radius equal to twice the norm of the
operator. Set f0 ≡ 1. Notice that sequential domination allows to write (1) in the form

‖q‖S =
⎛⎝ N∑

j=0

∫
f0 · · · fj |q(j)|2 d�0

⎞⎠1/2

, q ∈ P. (3)

In Theorem 4.1 of [12], the author proves, for Sobolev inner products supported on the real
line, that the boundedness of the multiplication operator implies that the corresponding Sobolev
norm is essentially sequentially dominated. Essential sequential domination means that the given
Sobolev norm is equivalent to another Sobolev norm which is sequentially dominated. Following
basically the same arguments, in [1] the authors prove a similar result for measures supported in
the complex plane. Therefore, sequential domination is a natural restriction if we are concerned
with finding bounds for the multiplication operator.

Let � be a finite Borel measure with compact support consisting of infinitely many points in
C, � = diag(�j ), 0�j �N , is a diagonal matrix of bounded positive � almost everywhere mea-
surable functions, and U = (uj,k), 0�j, k�N , is a square matrix of bounded Borel measurable
functions such that the matrix

U(x) = (uj,k(x)), 0�j, k�N
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is unitary � almost everywhere. We say that U is unitary. Set

W = U�U∗, (4)

where U∗ denotes the transpose conjugate of U.
Let T = (T0, . . . , TN), where Tj : P −→ P, j = 0, . . . , N , are linear applications. We assume

that T is injective. Fix p, 1�p < ∞. Set

‖q‖1 =
(∫

[T (q)W 2/pT (q)∗]p/2 d�

)1/p

=
(∫

[T (q)U�2/pU∗T (q)∗]p/2 d�

)1/p

. (5)

It is not difficult to verify that under the assumptions imposed, ‖ · ‖1 defines a norm on P . For
p = 2 this norm coincides with the one introduced in [5]. Moreover, (3) can be expressed in the
form (5) taking T (q) = (q, . . . , q(N)) and U the identity matrix. A more general case is when
U is an arbitrary unitary matrix with constant coefficients. In this case you obtain a generalized
Sobolev norm in which the product of derivatives of different order appears.

For simplicity, in defining ‖ · ‖1 we have decided to start out from the decomposition (4).
One can begin at an earlier stage from a � almost everywhere positive definite matrix W made
up of bounded Borel measurable functions, or even from a matrix of measures which evaluated
on each Borel set is positive semi-definite (see, for example, [3, Lemma 11, p. 1341]). Under
general assumptions, on W or on the matrix of measures, the existence of a (nonconstructive)
decomposition of type (4) can be guaranteed but this is a delicate matter which we prefer to avoid
in order to preserve the constructiveness of our arguments. A simple case in which there are no
difficulties in carrying out the decomposition is when W is a positive definite matrix with constant
entries or, more generally, with continuous entries.

We say that qn = zn + · · · is an nth monic extremal polynomial with respect to (5) if

‖qn‖1 = inf{‖q‖1 : q = zn + · · ·}.
The existence of qn is easy to prove. When 1 < p < ∞ the norm ‖ · ‖1 is strictly convex and thus
qn is uniquely determined. For the definition of a strictly convex norm and its connection with
the uniqueness property see pp. 22–23 of [2].

One of the basic results of this paper states the following.

Theorem 1. Let S(�) be compact, T (q) = (q, . . . , q(N)), and U unitary. Assume that

�j /�k �C, 0�j, k�N, (6)

� almost everywhere. Let {qn}, n ∈ Z+, be a sequence of extremal polynomials with respect to
(5). Then the zeros of the polynomials in {qn}, n ∈ Z+, are uniformly bounded in the complex
plane.

The radius of a disk centered at the origin containing the zeros of all the qn can be determined
in terms of C. When (6) takes place we say that the family of measures �0 d�, . . . , �N d�, is totally
dominated.

Section 2 is dedicated to the proof of a general result on the uniform bound of the zeros of
sequences of extremal polynomials from which Theorem 1 follows directly. In Section 3 we study
the zero distribution of extremal polynomials for the case considered in Theorem 1.
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To state the result on the zero distribution of extremal polynomials we need some concepts.
In [15], the authors introduce the class Reg of regular measures. For measures supported on a
compact set of the complex plane, they prove that (see Theorem 3.1.1) � ∈ Reg if and only if

lim
n→∞ ‖Qn‖1/n

L2(�) = cap(S(�)).

Here, Qn denotes the nth monic orthogonal polynomial (in the standard sense) with respect to
�, ‖ · ‖L2(�) is the usual norm in the space L2(�) of square integrable functions with respect to
�, and cap(S(�)) denotes the logarithmic capacity of S(�). If S(�) is a regular compact set with
respect to the solution of the Dirichlet problem on the unbounded connected component of the
complement of S(�) in the extended complex plane and 1�p < ∞, we have (see Theorem 3.4.3
in [15]) that � ∈ Reg if and only if

lim
n→∞

(
‖q̃n‖S(�)

‖q̃n‖Lp(�)

)1/n

= 1, (7)

where {̃qn}, n ∈ Z+ is any sequence of polynomials such that deg q̃n = n, n ∈ Z+. Here and in
the following, ‖ · ‖S(�) denotes the sup norm on S(�).

For any polynomial q of exact degree n, let us define

�(q) := 1

n

n∑
j=1

�zj
,

where z1, . . . , zn are the zeros of q repeated according to their multiplicity, and �zj
is the Dirac

measure with mass one at the point zj . This is the so-called normalized zero counting measure
associated with q. By �S(�) we denote the equilibrium measure on S(�). We have

Theorem 2. Let us assume that �0d� ∈ Reg, S(�) is regular with respect to the Dirichlet problem,
(6) takes place, T (q) = (q, . . . , q(N)), and {qn}, n ∈ Z+, is the sequence of extremal polynomials
with respect to the corresponding ‖ · ‖1. Then

lim
n→∞ ‖q(j)

n ‖
1
n

S(�) = cap(S(�)), j ∈ Z+. (8)

Furthermore, if S(�) has empty interior and its complement is connected, then

lim
n→∞ �(q(j)

n ) = �S(�), j ∈ Z+, (9)

in the weak star topology of measures.

2. Bound of M on the space (P, ‖ · ‖1)

Let M : P −→ P be the multiplication operator; that is M(q) = xq. We are interested
in finding sufficient conditions which guarantee that the multiplication operator is bounded on
(P, ‖ · ‖1). The reason for our interest comes from the following result which extends Theorem
2 of [10] to any norm on P .
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Theorem 3. Let (P, ‖ · ‖) be a normed space and assume that

‖M‖ = sup
‖q‖=1

‖M(q)‖ < +∞.

Let qn = zn + · · · , n = 1, 2, . . . , be such that

‖qn‖ = inf{‖q‖ : q = zn + · · ·}. (10)

Then the zeros of qn lie in the bounded disk {z : |z|�2‖M‖}.

Proof. Let z0 be a zero of qn. Then, there exists a monic polynomial q of degree n − 1 such that
qn = (z − z0)q. Since qn satisfies (10), we have

|z0|‖q‖ − ‖zq‖�‖z0q − zq‖ = ‖qn‖�‖zq‖.
Then,

|z0|‖q‖�2‖zq‖�2‖M‖‖q‖.
Since ‖q‖ �= 0, the conclusion readily follows. �

It is easy to see that in Theorem 2 the norm may not be substituted by a seminorm. In fact,
suppose that there exists a polynomial q, q /≡ 0, such that ‖q‖ = 0. Obviously, for any constant
c �= 0, the polynomial cq satisfies the same conditions. Let n > deg q and qn be an extremal
monic polynomial of degree n. It is easy to see that qn + cq is also a monic extremal polynomial
for all c. Taking c sufficiently large we can have zeros of qn + cq as large as we want.

Let U = [u0, . . . , un] where uj , 0�j �N , are the column vectors of U. Notice that

T (q)W 2/pT (q)∗ =
N∑

j=0

�2/p
j |T (q)uj |2,

� almost everywhere. It is well known (see [8, Theorem 27, pp. 71–72]) that for xj �0,

j = 0, 1, . . . , N ,

N∑
j=0

x�
j �

⎛⎝ N∑
j=0

xj

⎞⎠�

�(N + 1)�−1
N∑

j=0

x�
j , ��1

and

(N + 1)�−1
N∑

j=0

x�
j �

⎛⎝ N∑
j=0

xj

⎞⎠�

�
N∑

j=0

x�
j , 0 < ��1.

Using these inequalities, it follows that for p�2

N∑
j=0

�j |T (q)uj |p � |T (q)W 2/pT (q)∗|p/2 �(N + 1)(p−2)/2
N∑

j=0

�j |T (q)uj |p,
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� almost everywhere and if 1�p < 2

(N + 1)(p−2)/2
N∑

j=0

�j |T (q)uj |p � |T (q)W 2/pT (q)∗|p/2 �
N∑

j=0

�j |T (q)uj |p.

Consequently, for all p�1 there exist positive constants C1, C2 such that

C1

N∑
j=0

�j |T (q)uj |p � |T (q)W 2/pT (q)∗|p/2 �C2

N∑
j=0

�j |T (q)uj |p.

Set

‖q‖2 =
⎛⎝ N∑

j=0

∫
�j |T (q)uj |p d�

⎞⎠1/p

, q ∈ P.

It follows that (see (5))

C
1/p

1 ‖q‖2 �‖q‖1 �C
1/p

2 ‖q‖2, q ∈ P. (11)

Because of this, it is equivalent to prove the boundedness of the multiplication operator with
respect to ‖ · ‖1 and ‖ · ‖2.

We will also consider the norm on P given by

‖q‖3 =
⎛⎝ N∑

j=0

∫
�j |Tj (q)|p d�

⎞⎠1/p

, q ∈ P. (12)

The ‖ · ‖2 norm reduces to the ‖ · ‖3 norm when U = I . Let us prove some properties of these
three norms.

Lemma 1. For 1 < p < ∞, all three norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖3 are strictly convex on P .

Proof. In order to prove that ‖ · ‖1 is strictly convex it is sufficient to show that if q, r are
polynomials, not identically equal to zero, and ‖q + r‖1 = ‖q‖1 + ‖r‖1, then there exists � > 0
such that r ≡ �q.

Let ‖·‖euc denote the Euclidean norm on CN+1 and ‖·‖� the usual norm on Lp(�), 1 < p < ∞.

Obviously,

‖q‖1 = ‖‖T (q)U�1/p‖euc‖�.

For short, let us denote q̃ = T (q)U�1/p. Then, using the triangular inequality and the mono-
tonicity of the integral, we have

‖q + r‖1 = ‖‖ ˜q + r‖euc‖� = ‖‖q̃ + r̃‖euc.‖� �‖‖q̃‖euc + ‖̃r‖euc‖�

� ‖‖q̃‖euc‖� + ‖‖̃r‖euc‖� = ‖q‖1 + ‖r‖1.

If ‖q + r‖1 = ‖q‖1 + ‖r‖1, we must have equality on each step above. It follows (see p. 63 in
[13]) that there exists an � > 0 such that

‖̃r‖euc = �‖q̃‖euc,
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� almost everywhere. Also,

‖q̃ + r̃‖euc = ‖q̃‖euc + ‖̃r‖euc,

� almost everywhere. Let x ∈ S(�), the last equality yields that � almost everywhere there exists
�(x) > 0 such that

r̃(x) = �(x)̃q(x).

Then

‖̃r(x)‖euc = �(x)‖q̃(x)‖euc.

Since q /≡ 0, ‖q̃(x)‖euc �= 0, and �(x) = �, � almost everywhere. Therefore,

r̃ = T (r)U�1/p = �q̃ = T (�q)U�1/p,

� almost everywhere. Since U�1/p is injective � almost everywhere and T is injective, it follows
that r = �q, � almost everywhere, and thus r ≡ �q as we needed to prove.

The ‖ · ‖3 norm is a special case of the ‖ · ‖2 norm, so to conclude the proof it is sufficient to
show that the ‖ · ‖2 norm is strictly convex. In order to prove this, one can follow essentially the
previous arguments since

‖q‖2 =
(

N∑
k=0

‖T (q)uj‖p

Lp(�j d�)

)1/p

,

and the p norm on CN+1 is also strictly convex. We leave the details to the reader. �

Lemma 2. Assume that (6) takes place. There exist positive constants C3, C4, C5, C6, such that

C3‖q‖3 �‖q‖2 �C4‖q‖3, q ∈ P (13)

and

C5‖q‖3 �‖q‖1 �C6‖q‖3, q ∈ P. (14)

Proof. We already know that ‖ · ‖1 and ‖ · ‖2 are equivalent (regardless of (6)), so it suffices
to prove (13). Let us prove the first inequality in (13), the second one is obtained analogously
but easier. Let ej denote the unitary column vector with 1 in jth position and 0 in the rest. Let
vj = (uj,0, . . . , uj,N )∗ be the jth column of U∗. Since U is unitary, vj is the transpose conjugate
of the jth row of U. Suppose that p > 1, using Holder’s inequality and (6), we have

�j |Tj (q)|p = �j |T (q)ej |p = �j |T (q)Uvj |p = �j

∣∣∣∣∣
N∑

k=0

T (q)uku
∗
j,k

∣∣∣∣∣
p

� �j

(
N∑

k=0

|T (q)uk|p
)(

N∑
k=0

|u∗
j,k|r

)p/r

� C(N + 1)p/r
N∑

k=0

�k|T (q)uk|p, (15)
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� almost everywhere, where 1
p

+ 1
r

= 1 (notice that |u∗
j,k|�1, � almost everywhere). For p = 1

the inequality above is even easier to obtain with the constant C on the right-hand side. Therefore,⎛⎝ N∑
j=0

∫
�j |Tj (q)|p d�

⎞⎠1/p

�C1/p(N + 1)1/r

(
N∑

k=0

∫
�k|T (q)uk|p d�

)1/p

as needed. �

Theorem 4. Let T (q) = (q, q(1), . . . , q(N)) and (6) take place. Then the multiplication operator
is bounded on (P, ‖ · ‖3) and, consequently, with respect to the norms ‖ · ‖1 and ‖ · ‖2 in P . In
all three spaces the zeros of the extremal polynomials are uniformly bounded.

Proof. The last statement is a consequence of Theorem 3. From (11) and (13) the three norms
are equivalent so it is sufficient to show that the operator is bounded with respect to ‖ · ‖3.

Notice that

(xq)(j) = xq(j) + jq(j−1), k = 0, . . . , N.

Therefore,

‖xq‖3 =
⎛⎝ N∑

j=0

∫
�j |xq(j) + jq(j−1)|p d�

⎞⎠1/p

� 2(p−1)/p

⎛⎝ N∑
j=0

∫
�j (|xq(j)|p + |jq(j−1)|p) d�

⎞⎠1/p

�C7‖q‖3

for an appropriate constant C7. In the last step one uses a bound for |x| on S(�) and (6) in order
to correct the measure which multiplies |q(j−1)| plus obvious details. �

Theorem 1 is Theorem 4 as applied to ‖ · ‖1. Notice that in deducing the last inequality in the
proof of Theorem 4 it is only required that the functions �j be sequentially dominated. When
U = I , since ‖·‖2 and ‖·‖3 coincide, Lemma 2 is not needed and, therefore, the theorem remains
valid under the weaker assumption of sequential domination.

Another application is produced taking

Ti(q) =
∑
n

q(n(N+1)+i)(0)

(n(N + 1) + i)! xn, i = 0, . . . , N. (16)

These operators appear in [4] in connection with the study of sequences of polynomials on the
real line that satisfy recurrence relations with 2N + 3 terms. It is well known that there exists
a close relation between polynomials satisfying recurrence relations of higher order and matrix
orthogonal polynomials.

Theorem 5. Let T = (T0, T1, . . . , TN), where Tk, k = 0, . . . , N , is defined according to (16),
and (6) take place. Then the multiplication operator is bounded on (P, ‖ · ‖3) and, consequently,
with respect to the norms ‖ · ‖1 and ‖ · ‖2 in P . In all three spaces the zeros of the extremal
polynomials are uniformly bounded.
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Proof. It is easy to verify that

T (xq) = (T0(xq), . . . , TN(xq))

= (xTN(q), T0(q), . . . , TN−1(q)).

Thus

‖M(q)‖3 =
⎛⎝∫ �0|xTN(q)|p d� +

N∑
j=1

∫
�j |Tj−1(q)|p d�

⎞⎠1/p

�C8‖q‖3,

where C8 is the product of the constant C in (6) times the maximum between the sup norm of |x|
on S(�) and 1. The rest of the proof is a direct consequence of Theorem 3 and Lemma 2. �

3. Asymptotic distribution of zeros

We are ready for the

Proof of Theorem 2. Let Tn be the nth monic Tchebychev polynomial of degree n with respect
to the compact set S(�), and qn the nth monic extremal polynomial with respect to ‖ · ‖1. Denote
d� = �0 d�. From the extremal property of qn, (6) and (14), we have

C5‖qn‖Lp(�) � C5‖qn‖3 �‖qn‖1 �‖Tn‖1 �C6‖Tn‖3

� (|�|(1 + NC))1/pC6 max
0�k �N

‖T (k)
n ‖S(�), (17)

where |�| = �(S(�)).

It is well known that limn→∞ ‖Tn ‖
1
n

S(�) = cap(S(�)). By [10, Lemma 3.1] applied to Tn, it
follows that

lim sup
n→∞

‖T (j)
n ‖

1
n

S(�) �cap(S(�)), j ∈ Z+. (18)

From (17) and (18), we obtain

lim sup
n→∞

‖qn‖
1
n

Lp(�) �cap(S(�)).

This together with (7) imply

lim sup
n→∞

‖qn‖
1
n

S(�) �cap(S(�)),

and using again [10, Lemma 3.1], we obtain

lim sup
n→∞

‖q(j)
n ‖

1
n

S(�) �cap(S(�)), j ∈ Z+.

On the other hand,

lim inf
n→∞ ‖q(j)

n ‖
1
n

S(�) �cap(S(�)), j ∈ Z+
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since this inequality holds for any sequence of polynomials such that deg qn = n. Hence, (8)
takes place. If S(�) has empty interior and connected complement, according to Corollary III.4.8
in [14], (8) implies (9). With this we conclude the proof. �

Notice that from the proof also follows that

lim
n→∞ ‖qn‖1/n

1 = lim
n→∞ ‖qn‖1/n

Lp(�) = cap(S(�)).

Let g�(z; ∞) denote Green’s function for the unbounded component � of the complement of
S(�) with logarithmic singularity at ∞. We will assume that S(�) is regular with respect to the
Dirichlet problem. Then, g�(z; ∞) is continuous up to the boundary and we extend it continuously
to all C assigning it the value zero on the complement of �.

Theorem 6. Let us assume that�0 d� ∈ Reg,S(�) is regular with respect to the Dirichlet problem,
(6) takes place, T (q) = (q, . . . , q(N)), and {qn}, n ∈ Z+, is a sequence of extremal polynomials
with respect to ‖ · ‖1. Then, for each j ∈ Z+

lim sup
n→∞

|q(j)
n (z)| 1

n �cap(S(�))eg�(z;∞), (19)

uniformly on compact subsets of C. Furthermore,

lim
n→∞ |q(j)

n (z)| 1
n = cap(S(�))eg�(z;∞), (20)

uniformly on each compact subset of {z : |z| > 2‖M‖1} ∩ �. Finally, if the interior of S(�) is
empty and its complement connected, we have equality in (19) for all z ∈ C except on a set of
capacity zero, S(�S(�)) ⊂ {z : |z|�2‖M‖1}, and

lim
n→∞

q
(j+1)
n (z)

nq
(j)
n (z)

=
∫

d�S(�)(x)

z − x
,

uniformly on each compact subset of {z : |z| > 2‖M‖1}.

Proof. Fix j ∈ Z+ and set

vn(z) = 1

n − j
log

|q(j)
n (z)|

‖q(j)
n ‖S(�)

− g�(z; ∞).

Let us show that

vn(z)�0, z ∈ C ∪ {∞}. (21)

This function is subharmonic in � ∪ ∞ and on the boundary of � it is �0. By the maximum
principle for subharmonic functions it is �0 on all � ∪ {∞}. On the complement of �, by the
maximum principle of analytic functions, we have that |q(j)

n (z)|/‖q(j)
n ‖S(�) �0 and g�(z, ∞) = 0

by definition. Therefore, (21) takes place. Taking upper limit in (21) and using (8) we get (19).
From Theorem 3, we have that for all n ∈ Z+, the zeros of the extremal polynomials are

contained in the disc {z : |z|�2‖M‖1}. It is well known that the zeros of the derivative of a
polynomial lie in the convex hull of the zeros of the polynomial itself. Therefore, for all j ∈ Z+,
the zeros of q

(j)
n for all n ∈ Z+ lie in {z : |z|�2‖M‖1}. Using this, we have that {vn}n∈Z+ forms
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a sequence of harmonic functions in �′ = {z : |z| > 2‖M‖1}∩ (�∪{∞}) uniformly bounded on
each compact subset of �′. Take a sequence of indices � such that {vn}n∈� converges uniformly
on each compact subset of �′. Let v� denote its limit. Obviously, v� is harmonic and �0 in �′.
Because of (8), v�(∞) = 0. Therefore, v� ≡ 0 in �′. Since this is true for every convergent
subsequence of {vn}n∈Z+ , we get that the whole sequence converges to zero uniformly on each
compact subset of �′ which is equivalent to (20).

If the interior of S(�) is empty and its complement connected, we can use (9). The measures
�n,j = �(q(j)

n ), n ∈ Z+, and �S(�) have their support contained in a compact subset of C. Using
this and (9), from the Lower Envelope Theorem (see [15, p. 223]), we obtain

lim inf
n→∞

∫
log

1

|z − x| d�n,j (x) =
∫

log
1

|z − x| d�S(�)(x),

for all z ∈ C except on a set of zero capacity. This is equivalent to having equality in (19) except
on a set of zero capacity, because (see [15, p. 10])

g�(z; ∞) = log
1

cap(S(�))
−
∫

log
1

|z − x| d�S(�)(x).

Let x
j
n,i , i = 1, . . . , n − j , denote the n − j zeros of q

(j)
n . As indicated, all these zeros are

contained in {z : |z|�2‖M‖1}. From (9), each point of S(�) must be a limit point of zeros of
{q(j)

n }; therefore, S(�S(�)) ⊂ {z : |z|�2‖M‖1}. Decomposing into simple fractions and using
the definition of �n,j , we obtain

q
(j+1)
n (z)

nq
(j)
n (z)

= 1

n

n−j∑
i=1

1

z − x
j
n,i

= n − j

n

∫
1

z − x
d�n,j (x). (22)

Therefore, for each fixed j ∈ Z+, the family of functions{
q

(j+1)
n (z)

nq
(j)
n (z)

}
, n ∈ Z+, (23)

is uniformly bounded on each compact subset of {z : |z| > 2‖M‖1}.
On the other hand, all the measures �n,j , n ∈ Z+, are supported in {z : |z|�2‖M‖1} and for

z, |z| > 2‖M‖1, fixed, the function (z−x)−1 is continuous with respect to x on {x : |x|�2‖M‖1}.
Therefore, from (9) and (22), we find that any subsequence of (23) uniformly convergent on
compact subsets of {z : |z| > 2‖M‖1}, converges pointwise to

∫
(z − x)−1 d�S(�)(x). Thus, the

whole sequence converges uniformly to this function on compact subsets of {z : |z| > 2‖M‖1}
and we are done. �

Acknowledgments

The work of G. López and H. Pijeira was supported by Dirección General de Investigación,
Ministerio de Ciencias y Tecnología of Spain under grant BFM 2003–06335–C03–02. G. López
also received partial support from NATO PST.CLG.979738 and INTAS 03-51-6637.

References

[1] V. Alvarez, D. Pestana, J.M. Rodriguez, E. Romera, Weighted Sobolev spaces on curves, J. Approx. Theory 119
(2002) 41–85.



G.L. Lagomasino et al. / Journal of Approximation Theory 137 (2005) 226–237 237

[2] E.W. Cheney, Introduction to Approximation Theory, third ed., A.M.S. Chelsea, Providence, RI, 2000.
[3] N. Dunford, J.T. Schwartz, Linear Operators, Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space,

Interscience, New York, 1983.
[4] A.J. Duran, On orthogonal polynomials with respect to a positive definite matrix of measures, Canad. J. Math. 47

(1995) 88–112.
[5] A. Duran, E. Saff, Zero location for nonstandard orthogonal polynomials, J. Approx. Theory 113 (2001) 127–141.
[6] W. Gautschi, A.B.J. Kuijlaars, Zeros and critical points of Sobolev orthogonal polynomials, J. Approx. Theory 91

(1997) 117–137.
[7] J. Geronimo, D. Lubinski, F. Marcellan, Asymptotics for Sobolev orthogonal polynomials for exponential weights,

Constr. Approx. 22 (2005) 309–346.
[8] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
[9] G. Lopez Lagomasino, H. Pijeira, Zero location and nth root asymptotics of Sobolev orthogonal polynomials, J.

Approx. Theory 99 (1999) 30–43.
[10] G. Lopez Lagomasino, H. Pijeira, I. Perez, Sobolev orthogonal polynomials in the complex plane, J. Comp. Appl.

Math. 127 (2001) 219–230.
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